Lecture 1: Consumption Based Model

Bernardino Adao

ISEG, Lisbon School of Economics and Management

Fev. 17, 2023

Bernardino Adao, ISEG (Institute)

Financial Economics - Lecture 1

 The central idea of modern finance is that prices are generated by expected discounted payoffs,

$$p_t = E_t(m_{t+1}x_{t+1})$$

where p_t = asset price, x_{t+1} = asset payoff, m_{t+1} = stochastic discount factor

• Examples:

Asset	Price	Payoff
Stock	${\mathcal S}_t$	${\mathcal S}_{t+1} + {\mathcal D}_{t+1}$
Return	1	R_{t+1}
Option	\mathcal{C}	$\max\left\{ {{\mathcal{S}}_{{\mathcal{T}}}} - {{\mathcal{K}}_{{r}}} 0 \right\}$

- Different models imply different m_{t+1}
- Models: consumption-based model, CAPM, ICAPM, APT, option pricing, etc...
- We start with the most general model built by Debreu, Arrow, Lucas and Prescott and then proceed to the specializations of it
- What theories match the facts?
 - Each model leads to predictions stated in terms of returns, price-dividend ratios, expected return-beta representations, moment conditions, etc...
 - Theories should be frequently assessed and modified in view of new evidence

- Some basic facts
- Study the asset pricing implications of household portfolio choice
- Consider the quantitative implications of a second-order approximation to asset return equations
- Reference: Mehra and Prescott (JME, 1984)

- Stock returns:
 - Average real return on SP500 is 8% per year
 - Stock returns are very volatile: $\sigma({\it R})=17\%$ per year
 - Stock returns show very little serial correlation (ho=0.08 quarterly data, -0.04 annual data)
- Bond returns:
 - The average risk free rate is 1% per year (US Tbill Inflation)
 - The risk free rate is not very volatile: $\sigma(R) = 2\%$ per year but is persistent ($\rho = 0.6$ in annual data) leading to medium-run variation
- These imply that the equity premium is large 7% per year on an annual basis

S&P 500 (1)

Bernardino Adao, ISEG (Institute)

Financial Economics – Lecture 1

æ Fev. 17, 2023

э.

・ロト ・日下 ・ 日下

S&P 500 (2)

Bernardino Adao, ISEG (Institute)

Fev. 17, 2023

/ 33

Nasdaq

Bernardino Adao, ISEG (Institute)

Financial Economics - Lecture 1

Fev. 17, 2023 8 / 33

Real value of \$1 invested in 1925

Bernardino Adao, ISEG (Institute)

Financial Economics - Lecture 1

Real value of \$1 invested in 1925-log scale

Bernardino Adao, ISEG (Institute)

Financial Economics - Lecture 1

Fev. 17, 2023 10 / 33

Shifting to bonds

Bernardino Adao, ISEG (Institute)

Financial Economics - Lecture 1

Fev. 17, 2023 11 / 33

Annual returns

12 / 33

Real GDP and Consumption

Bernardino Adao, ISEG (Institute)

Financial Economics - Lecture 1

Fev. 17, 2023 13 / 33

Comparison of volatilities

Bernardino Adao, ISEG (Institute)

Financial Economics - Lecture 1

Fev. 17, 2023 14 / 33

Equity Premium and Risk (all variables measured in real terms)

	Stock Returns	Bond Returns	Stock-Bond	GDP	Consumption
E	8.6	1.3	7.4	3.2	3.3
Stand. Dev	17.6	2.6	18.1	2.6	2.1
Corr	0.99	-0.03	1.00	0.32	0.39

Regression of returns on lagged returns

$\frac{1}{1} \frac{1}{1} - \frac{1}{4} + \frac{1}{1} \frac{1}{1} + \frac{1}{1} \frac{1}{1} \frac{1}{1} + \frac{1}{1} \frac{1}$								
Stall	0.01		n 0.000	E(R)	$\sigma(E_t(R_{t+1}))$			
SLOCK	0.04	0.33	0.002	11.4	0.77			
T bill	0.91	19.5	0.83	4.1	3.12			
Excess	0.04	0.39	0.00	7.25	0.91			

Table I Return-Forecasting Regressions

The regression equation is $R_{t \to t+k}^e = a + b \times D_t/P_t + \varepsilon_{t+k}$. The dependent variable $R_{t \to t+k}^e$ is the CRSP value-weighted return less the 3-month Treasury bill return. Data are annual, 1947–2009. The 5-year regression *t*-statistic uses the Hansen–Hodrick (1980) correction. $\sigma[E_t(R^e)]$ represents the standard deviation of the fitted value, $\sigma(\hat{b} \times D_t/P_t)$.

Horizon k	ь	t(b)	R^2	$\sigma[E_t(R^e)]$	$\frac{\sigma\big[E_t(R^e)\big]}{E(R^e)}$
1 year	3.8	(2.6)	0.09	5.46	0.76
5 years	20.6	(3.4)	0.28	29.3	0.62

• Cambpell and Shiller (and many others) consider the following regression:

$$R^{e}_{t,t+k} = \alpha + \beta \frac{D_t}{P_t} + \varepsilon_t$$

where $R_{t,t+k}^e$ is the realized cumulative return over k periods.

k	1y	2y	3у	4y	1y	2у	3у	4y
β	3.83	7.42	11.57	15.81	3.39	6.44	9.99	13.54
tstat	2.47	3.13	4.04	4.35	2.18	2.74	3.58	3.83
R^2	0.07	0.11	0.18	0.20	0.06	0.09	0.15	0.17

Return predictability (7-year return)

Bernardino Adao, ISEG (Institute)

Financial Economics - Lecture 1

Fev. 17, 2023 19 /

9/33

OLS Regressions of Excess Returns (value-weighted NYSE—Treasury bill) and Real Dividend Growth on the Value-Weighted NYSE Dividend-Price Ratio

Horizon k	$R^e_{t \to t+k}$	$R^{e}_{t \to t+k} = a + b \frac{D_{t}}{P_{t}} + \varepsilon_{t+k}$		$\frac{D_{t+1}}{D_{t}}$	$\frac{D_{t+k}}{D_t} = a + b\frac{D_t}{P_t} + \varepsilon_{t+k}$		
() class)	b	t(b)	R^2	b	t(b)	R ²	
1	4.0	2.7	0.08	0.07	0.06	0.0001	
2	7.9	3.0	0.12	-0.42	-0.22	0.0010	
3	12.6	3.0	0.20	0.16	0.13	0.0001	
5	20.6	2.6	0.22	2.42	1.11	0.0200	

Sample 1927–2005, annual data. R_{t-t+k}^{e} denotes the total excess return from time *t* to time *t* + *k*. Standard errors use GMM (Hansen–Hodrick) to correct for heteroskedasticity and serial correlation.

- Small firms have high returns on average (size premium)
- Firms with low Tobins' Q (low book/market) have higher returns on average (value premium)
- Firms with high recent returns tend to have high returns in near future (momentum anomaly)

- Lucas, Robert E. Jr, 1978, "Asset Prices in An Exchange Economy", Econometrica
- Time: $t = 0, 1, ...\infty$
- Consumers and one Firm
- Preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t)$$

- The firm pays dividend \mathcal{D}_t and the price of stock is \mathcal{S}_t
- The consumers issue zero coupon bonds

- Let $\mathcal{B}_{j,t}$ price at t of the zero coupon that matures at $t+j, \ \mathcal{B}_{0,t}=1$
- There are T maturities of debt
- Denote by $B_{j,t}$ and S_t the holdings of j bonds and shares at the start of t

- The dividend, D_t , is paid start of period t, is exogenous and equal to y_t (the endowment)
- The endowment y_t follows some stochastic process

Budget Constraint of the representative consumer:

$$\sum_{j=1}^{T} B_{j,t+1} \mathcal{B}_{j,t} + S_{t+1} \mathcal{S}_t + c_t = \sum_{j=1}^{T} B_{j,t} \mathcal{B}_{j-1,t} + S_t \left(\mathcal{D}_t + \mathcal{S}_t \right)$$

$$\begin{split} L &= E_0 \sum_{t=0}^{\infty} \beta^t u(c_t) + \\ E_0 \sum_{t=0}^{\infty} \lambda_t \left\{ \sum_{j=1}^{T} B_{j,t} \mathcal{B}_{j-1,t} + S_t \left(\mathcal{D}_t + \mathcal{S}_t \right) - \sum_{j=1}^{T} B_{j,t+1} \mathcal{B}_{j,t} - S_{t+1} \mathcal{S}_t - c_t \right\} \end{split}$$

→

(日) (日) (日) (日)

2

$$\beta^t u'(c_t) - \lambda_t = 0$$

$$E_t \left[\lambda_{t+1} \left(\mathcal{D}_{t+1} + \mathcal{S}_{t+1}
ight)
ight] - \lambda_t \mathcal{S}_t = 0$$

for all t

$$E_t \left[\lambda_{t+1} \mathcal{B}_{j-1,t+1} \right] - \lambda_t \mathcal{B}_{j,t} = 0$$

for j = 1, ..., T all t

æ

$$u'(c_t)\mathcal{S}_t = \beta \mathcal{E}_t \left[u'(c_{t+1}) \left(\mathcal{D}_{t+1} + \mathcal{S}_{t+1} \right)
ight]$$

for all t

$$u'(c_t)\mathcal{B}_{j,t} = \beta E_t \left[u'(c_{t+1})\mathcal{B}_{j-1,t+1}\right]$$

for j = 1, ..., T all t

By replacing back this expression

$$\begin{split} \mathcal{S}_t &= \mathcal{E}_t \left\{ \sum_{s=1}^{\infty} \beta^s \frac{u'(c_{t+s})}{u'(c_t)} \mathcal{D}_{t+s} \right\} + \lim_{J \to \infty} \beta^J \mathcal{E}_t \frac{u'(c_{t+J})}{u'(c_t)} \mathcal{S}_{t+J} \\ \mathcal{B}_{j,t} &= \mathcal{E}_t \left\{ \beta^j \frac{u'(c_{t+j})}{u'(c_t)} \mathcal{B}_{j-1,t+1} \right\}, \text{ for } j = 1, ... T \end{split}$$

æ

Stochastic Discount Factor

$$m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)}$$

Asset payoff

$$\mathbf{x}_{t+1} = \mathcal{D}_{t+1} + \mathcal{S}_{t+1}$$
 ,

for stock

$$x_{t+1} = \mathcal{B}_{j-1,t+1}$$
 ,

for a *j* maturity bond *Price*

 \mathcal{S}_t for stock

 $\mathcal{B}_{i,t}$, for a *j* maturity bond

Bernardino Adao, ISEG (Institute)

Financial Economics - Lecture 1

Fev. 17, 2023 30 / 33

$$p_t = E_t m_{t+1} x_{t+1}$$

$$S_t = E_t \left\{ \beta \frac{u'(c_{t+1})}{u'(c_t)} \left(\mathcal{D}_{t+1} + S_{t+1} \right) \right\}$$
$$\mathcal{B}_{j,t} = E_t \left\{ \beta \frac{u'(c_{t+1})}{u'(c_t)} \mathcal{B}_{j-1,t+1} \right\}$$

Bernardino Adao, ISEG (Institute)

Financial Economics – Lecture 1

Fev. 17. 2023 31 / 3

э.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Allocation and prices such that (i) the allocation solves the representative household problem of maximizing his intertemporal utility given his budget constraint and (ii) prices clear the markets.

Equilibrium

Total supply of the good

$$y_t = \mathcal{D}_t$$
, all t

Markets

$$c_t = y_t$$
, all t

$$S_t = 1$$
, all t

$$B_{j,t} = 0$$
, all j and t

Equilibrium

$$ullet$$
 replace $c_t=y_t$ in and solve for prices $\mathcal{B}_{j,t}$ and \mathcal{S}_t

æ

Image: A math a math